Oersted, Ampère y Faraday: sobre el experimento de Oersted

*Celso Vargas Zamora

Un fascinante episodio de la historia de la física lo constituye la discusión que se produce en relación con el experimento de Oersted (1820), entre Ampère (1775-1836) y Faraday (1791-1867). También participó Oersted. Sin embargo, nos centraremos en estos dos últimos. Ampère, un destacado matemático y físico, partidario de la física newtoniana; Faraday, un extraordinario físico y experimentalista, convencido de que la electricidad y magnetismo son manifestaciones de una única fuerza presente en la naturaleza. Es uno de los más apasionados y profundos promotores de la teoría de los campos de fuerza, a la que contribuyó de manera significativa. 

Oersted fue influido por la idea de Johann Wilhelm Ritter (1776-1810) de que hay interacción entre electricidad y magnetismo. Esta idea estaba inspirada en Schelling. Su experimento de 1820 parecía demostrar esta interacción. Así fue reconocido por la comunidad científica. Sin embargo, para Ampère este experimento no mostraba tal interacción. La razón de hecho es muy simple: No puede existir tal interacción. Para Ampère la electricidad y el magnetismo son dos fenómenos completamente diferentes; no hay interacción entre ellos. Algunos elementos del mismo experimento de Oersted parecía indicar que el tema podía ser abordado desde el punto de vista newtoniano. Primero, la intensidad del efecto observado al aplicar una corriente eléctrica al gálvano, varía según el inverso del cuadrado de las distancias, una importante ley newtoniana. Segundo, aunque Oersted no lo menciona, parece existir fuerzas de atracción y repulsión que explican los movimientos en dirección opuesta de la aguja imán según la posición en la que se coloque el cable negativo. 

Continuar leyendo “Oersted, Ampère y Faraday: sobre el experimento de Oersted”

Una posible interpretación del experimento de Oersted a partir de Ladriere

*Celso Vargas Elizondo

En su pionero libro sobre los estudios del impacto de la ciencia y la tecnología sobre la cultura,  El Reto de la Racionalidad (1977), Jean Ladriere presenta algunas ideas interesantes que nos podría permitir realizar una interpretación de los experimentos de Oersted de 1820. 

La ciencia moderna se desarrolla marcada por el concepto de racionalidad. El tipo de racionalidad del que hablamos es aquel de la filosofía griega, cuyo rescate inicia con el renacimiento europeo y que alcanzará su plenitud en la filosofía del siglo XVII, XVIII y XIX, y hasta el presente. La segregación de las ciencias heredará esta característica filosófica. Una teoría científica es la aprehensión racional de la realidad (sub specie aeternitatis), es decir, como universal y eternamente verdadera. La verdad como correspondencia y la regularidad de la naturaleza son dos de los elementos centrales de esta racionalidad que la ciencia hereda. Una teoría científica se asemeja así a aquellas perspectivas filosóficas de la sabiduría (Leibniz se hace eco de esta idea) y de la perfección individual. El científico es el nuevo sabio. Pero esta herencia pronto sufrirá transformaciones sustantivas.

Continuar leyendo “Una posible interpretación del experimento de Oersted a partir de Ladriere”

El experimento de Oersted desde el perspectiva de las revoluciones científicas

*Celso Vargas Elizondo

Como se recordará, para Thomas Kuhn, la ciencia evoluciona por el establecimiento y eventual destronamiento de paradigmas; proceso conocido como revoluciones científicas. Debido a lo ambiguo del este concepto, en el “pos-cripto de 1969”, Kuhn precisará el término “paradigma” en dos sentidos diferentes, uno más sociológico para identificar a una comunidad de científicos que comparten una determinada visión y valores. El segundo, el de “matriz disciplinar”, para captar uno de los aspectos sustantivos de la evolución del conocimiento científico. De esta manera, Kuhn sigue utilizando el término “paradigma” en estos dos sentidos, los cuales son contextualmente separables. Así salva la gran popularidad que este concepto adquirió dentro y fuera de las ciencias naturales; ha sido muy importante en las ciencias sociales.

De manera general, el paradigma captura el carácter revolucionario de ciertos momentos de la ciencia en los que una determinada visión de mundo, un conjunto de prácticas, formas de abordar los problemas y de representar el mundo, es drásticamente reemplazado por otro. Significativo es el caso del geocentrismo de Ptolomeo que fue desplazado rápidamente, después de unos1400 años de vigencia, por el heliocentrismo copernicano mucho más adecuado a los nuevos datos. Esto propició a su vez, el desarrollo de una de revoluciones científicas más importantes del siglo XVII y XVIII: la mecánica newtoniana. Esta mecánica no solamente reemplazó la física aristotélica, sino que permitió unificar una serie de “fenómenos” que antes aparecían de manera desligada. Tal es el caso de la relación entre la fuerza que mantiene unidos los planetas y el sol, la caída de los cuerpos, las trayectoria de los cometas, el achatamiento del globo en el ecuador y las mareas, entre otros. Esto trajó un increíble avance del conocimiento científico.

Continuar leyendo “El experimento de Oersted desde el perspectiva de las revoluciones científicas”

El De magnete de William Gilbert de Colchester. II parte

 *Guillermo Coronado

El libro

El De Magnete refleja una estructura muy ordenada, con seis libros y 115 capítulos, además de un Prefacio por el autor, con interesantes consideraciones metodológicas (1) y un prefacio muy elogioso de Edward Wright. 

En el l libro primero se presenta una reseña histórica de los conocimientos previos sobre lo magnético, desde los griegos, pasando por el asombroso medieval del siglo XIII, Pedro de Maricourt, hasta los desarrollos renacentista, tanto de los técnicos de la navegación como de eruditos investigadores de la naturaleza.  Además, se presenta una descripción de los rasgos fenoménicos más significativos del magnetismo, entre ellos, su polaridad, su divisibilidad no en partes sino en magnetos más pequeños, su atracción del hierro pero no de otras substancias, etc.

Continuar leyendo “El De magnete de William Gilbert de Colchester. II parte”

El Experimento de Oersted (1820) como parte de un programa científico de investigación

*Celso Vargas Elizondo

En la anterior perspectiva señalamos que nos llama la atención el carácter optimista, positivo de la presentación de los resultados de sus experimentos por parte de Oersted.  Esto en contraste con lo que nos indica Popper al enfatizar en la falsabilidad de las teorías científica.  Una de las propuestas filosóficas y metodológicas que nos permite explicarlo es la de Lakatos (1922-1974), conocida como Metodología de las programas científicos de investigación.  Es una metodología general que se aplica tanto al desarrollo de la ciencia como de las matemáticas. La propuso en 1965, pero no tuvo el tiempo suficiente para desarrollarla de manera más rigurosa. Sorprendente resulta  la aplicación de esta metodología a diferentes casos en la historia de la ciencia que Lakatos en las que muestra un gran dominio.  Incorpora elementos de otras metodologías, dentro de un marco bastante original y racional. Utiliza conceptos analógicas como núcleo duro de una teoría, heurística positiva, heurística negativa, cinturón protector de la teoría.  No es el único en hacer este uso en filosofía de la ciencia, recordemos a Quine. No obstante lo anterior, permiten ser aplicados de manera bastante precisa en la evaluación del desarrollo de la ciencia. 

Continuar leyendo “El Experimento de Oersted (1820) como parte de un programa científico de investigación”

El De magnete de William Gilbert de Colchester. I Parte

*Guillermo Coronado

El presente ensayo que tiene como fin ofrecer una breve panorámica de la obra fundamental de William Gilbert, el De Magnete, que fue publicado en 1600, consta de dos partes, a saber, una de índole biográfica y la otra de breve análisis de la obra antes citada.  A continuación unas pinceladas biográficas acerca de William Gilbert de Colchester.

El hombre

William Gilbert nació el 24 de mayo de 1544, en Colchester, Essex, a unos ochenta kilómetros al noreste de Londres.  Luego de cumplir con la educación elemental se matricula en el St. Johs´s College, de la Universidad de Cambridge, en el año de 1588.  Obtiene su B.A. dos años después, y su M.A. en 1564.  Fue nombrado “mathematical examiner” al año siguiente, y emprende estudios formales de medicina.  En 1569 culmina su M.D. y se le nombra senior Fellow del College.  Por 11 años estará ligado al St. John´s College.

Sin embargo poco tiempo después de su graduación como médico deja Cambridge, y como era de rigor para completar la educación de un inglés, emprende un largo viaje por Europa continental. El tradicional “grand tour” de incorporación al mundo intelectual de su interés, que en este caso le toma unos cuatro años, y se centra especialmente en la visita a Italia.  Al regreso, se establece en Londres desde 1573 e inicia una exitosa carrera como médico.  Igualmente se destaca por su interés en los estudios científicos, en especial en temas químicos, físicos y cosmológicos.  Conforma una importante biblioteca científica, una gran colección de instrumentos científicos, algunos de su propia invención.  Su casa en Londres se convierte en importante centro de reuniones de los interesados en las ciencias.  En consecuencia, podría verse como un remoto antecedente del Colegio Invisible, Rgrupo de intelectuales interesados en ciencias, bajo la dirección de obert Boyle, que deviene posteriormente en lo que será la Real Sociedad de Londres a mediados del siglo siguiente.

Algunos contemporáneos señalan que la inversión de Gilbert en instrumentos científicos alcanzó la enorme cifra de cinco mil libras esterlinas.

Hacia 1576 se le admite en el Real Colegio de Médicos, en el que también desempeña exitosamente varias funciones, carrera que culmina en 1599-1600, con el nombramiento de Presidente de dicha institución médica.  Al año siguiente, 1601, se convierte en médico de la corte de la Reina Elizabeth I.  A la muerte de la reina, el 24 de marzo de 1603, se le mantiene como médico del sucesor, Jaime I, pero lamentablemente Gilbert muere a fines de ese mismo año, el 30 de noviembre de 1603, víctima de la plaga de peste bubónica de ese año que asoló a Londres.  Está enterrado en su ciudad natal de Colchester.  Como nunca se casó ni tuvo descendencia, Gilbert dona sus instrumentos científicos y su gran biblioteca al Real Colegio de Médicos, pero todo ello se perderá como consecuencia del gran incendio de Londres en 1666.

Su obra fundamental, resultado de dieciocho a veinte años de lecturas y experimentos, De magnete Magneticisque Corporibus et de Magno Magnete Tellure Physiologia Nova, plurimis & argumentis, & experimentis demonstrata, (conocida en español como Sobre los imanes, los cuerpos magnéticos y el gran imán terrestre) fue publicada en 1600, por Peter Short, en Londres.  Elzeviers, la famosa editorial continental la publica en 1628.  El libro está escrito en latín como lo exigía el rigor intelectual de aquellos tiempos.

Sin embargo no será sino hasta 1893 que aparece traducción al inglés por Paul Fleury Mottelay, seguida poco después por la traducción de Silvanus Thompson, aparecida en 1900.

De Magnete, 1628

Como se verá en más detalle en la segunda parte de este texto, el De Magnete no solamente es importante por el estudio de los imanes sino también de la electricidad, fomentando una serie de investigaciones sobre fenómenos eléctricos de gran importancia.  Pero también poniendo juntas las investigaciones del magnetismo y la electricidad.  Y lo que para Gilbert es una simple yuxtaposición luego resultará fundamental en la conformación del electromagnetismo. 

Como resultado de la aparición de dicho libro, William Gilbert se convirtió en una estrella fulgurante en el firmamento intelectual europeo, como lo evidencia las referencias de Kepler y Galileo a las investigaciones de Gilbert.  En el caso particular de Kepler, en su obra Astronomía Nova, 1609, se considera al Sol, foco del movimiento de la órbita de Marte, como un gran imán que ejerce su fuerza magnética sobre Marte y por tanto atrayendo y repeliendo al planeta.  Y específicamente Kepler  reconoce el papel de la filosofía magnética de Gilbert.  

Otro trabajo importante de William Gilbert de Golchester, De Mundo Nostro Sublunari Philosophia Nova, fue publicado en forma póstuma por su medio hermano, William de Melford, en 1651, en Amsterdam.  Como la describe el mismo Gilbert al mismo inicio del libro se propone una “Philosophia nova contra Aristotelem”.  Pero no tuvo ni por asomo el impacto del De Magnetelibro que trataremos en la segunda entrega de este breve ensayo.

Interpretación Popperiana del experimento de Oersted de 1820

*Celso Vargas Elizondo

Para Popper, la ciencia progresa mediante un constante proceso de resolución de problemas. Cuando se arriva a una idea, por ejemplo, “es posible la interacción entre la electricidad y el magnetismo”, el primer problema que enfrenta el científico es expresar esa idea en términos lo más precisos, por ejemplo, “puede determinarse (observarse) la interacción entre electricidad y magnetismo”. El segundo problema que enfrenta es convertir esta idea de forma que se puedan derivar consecuencias experimentales.  Por ejemplo, “Si existe interacción entre electricidad y magnetismo, al aplicar una corriente eléctrica X al arreglo Y, se producirá un efecto Z”; prestando atención a que el consecuente efectivamente sea deducible del antecedente.  Tercero es importante hacer explícitas las hipótesis auxiliares de manera que resulte claro que, del arreglo experimental propuesto, puede someterse a contrastación la afirmación “existe interacción entre la electricidad y el magentismo”. Finalmente, llevar a cabo el experimento esforzándose por encontrar un resultado negativo.  Si se obtiene, aplicando Modus Tollendo Tollens (MT) podemos concluir que el antecedente es falso. Es decir, que no hay interacción entre la electricidad y el magnetismo. Si el resultado fue positivo, es decir, se corrobora la interacción entre electricidad y magnetismo, se afirma que, de manera tentativa, la teoría ha pasado la prueba, pero en ningún sentido se puede afirmar que haya sido confirmada, pues el siguiente caso o experimento podría falsar la teoría en cuestión.

Varios problemas importantes enfrenta esta metodología.  Nos centraremos en los cuatro siguientes:

a) Caundo un resultado experimental es negativo, realmente lo que tenemos en una conjunción entre la hipótesis H, y las hipótesis auxiliares que hemos introducido durante el proceso de experimentación.  En este caso, tenemos que lo que se somete a experimentación es la conjunción de H y Ai, donde Ason las hipótesis auxiliares.  El MT lo que establece es que: Si P implica Q, y Q es falso, entonces, P es también falso, es decir, No-P.  En este caso, P es (H ˄ A1˄ … ˄ Ai) y, por tanto, No-(H ˄ A1˄ … ˄ Ai) es igual a decir, No-H o No- Ao….o No- Ai.   Es decir, no implica que H sea falsa, sino que puede ser alguna o algunas de las hipótesis auxiliares. Popper es muy consciente de este problema e introduce la siguiente regla metodológica: “… se considerarán aceptables únicamente aquellas cuya introducción no disminuya el grado de falsabilidad o contrastabilidad del sistema…, sino que lo aumente”.

b) El experimento no está adecuada diseñado.  Aquí tenemos dos opciones.  Uno, que se deba a aparatos defectuosos, como es el caso de los primeros experimentos de Oersted.  Esto se corrige, como también hizo Oersted, mejorando los dispositivos requeridos para un mejor experimento.  El segundo caso es cuando los resultados obtenidos no son replicables.  Un ejemplo en cuestión fueron los experimentos de Bitter sobre magnetoquímica.  Estos fueron seriamente criticados por Paul Erman (1764-1851) un destacasdo físico. Fueron tan severas la críticas que propicio un estancamiento en este ámbito del conocimiento durante varias décadas.

c) Cuando los resultados no son claramente interpretados. Esto sucedió también con la interpretación de los resultados de Oersted que introdujo teorías como “conflicto eléctrico” que hacían poco claro el impacto de su experimento.  Desde luego esto sucede cuando un determinado campo de la investigación es incipiente, es decir, cuando los conceptos y la teoría sobre el campo no han sido consolidados.  Finalmente,

d) Cuando el incipiente desarrollo de un campo permite que se cuestione fuertemente la validez del supuesto de partida.  En este caso, de que existe interacción entre electricidad y magnetismo.  Ampére analizó con detalle el experimento de Oersted y propuso una interpretación teórica de los resultados, muy consistente, basada en el supuesto de que la electricidad y el magnetismo son fenómenos diferentes y que el efecto observado es una forma de  manifestación de la electricidad. Para este autor, entonces, el experimento de Oersted no establece ningún tipo de interacción.

Cuando realizamos la lectura del reporte de sus experimentos de Oersted publicado en  1820, no encontramos mucho de la perspectiva popperiana.  Más bien, nos parece que hay un esfuerzo por describir, de manera bastante precisa, el experimento realizado de manera que se pueda replicar.  De hecho, incluso recurre Oersted a una técnica para memorizar mejor una de las condiciones.  Dice “(p)ara que estas cosas puedan ser más fácilmente recordadas, usemos esta fórmula: el polo sobre el cual la electricidad negativa entra, se vuelve hacia el oeste, cuando entra por debajo, se vuelve al este”.  El reporte del experimento está escrito de manera muy positiva lo que pone de manifiesto el convencimiento del autor, no solo en relación con la idea de la interacción entre la electricidad y el magnetismo, sino también en el sentido de que ha establecido una prueba experimental de que es así.  Más aún, en el reporte de sus experimentos hay un esfuerzo por proponer una interpretación de los resultados y extrapolar los resultados obtenidos a otros ámbitos científicos.   Por ejemplo, en relación con su teoría de los “conflictos eléctricos” señala que ha demostrado que el calor y la luz están en conflicto eléctrico, de manera que el conflicto eléctrico es un fenómeno más general.

Por lo anterior, nos parece que debemos buscar otras posibilidades teóricas de entender este tipo de experimentos; lo cual haremos en dos próximas perspectivas.

La electricidad y el magnetismo

*Amílkar Mora Sánchez

La electricidad y el magnetismo en la actualidad son una sola parte de la física, el electromagnetismo. Ese cambio –la unificación de los fenómenos eléctricos y magnéticos en un solo campo de estudios– procede de un descubrimiento que acaba de cumplir sus 200 años y cuyo descubridor, Hans Christian Oersted (1777-1851), también acuñó el término “electromagnetismo” (Beléndez, 2015).  Oersted descubrió que la corriente eléctrica produce efectos magnéticos, por lo que electricidad y el magnetismo tienen relación.

Esta efeméride es importante porque supone un notable cambio, ya que desde el inicio de la racionalidad filosófica (siglo VI a.C., con los jonios de Mileto) se consideraba a la electricidad y al magnetismo como fenómenos distintos (que no tenían por qué estar vinculados). Ese cambio llega a una culminación con J. C. Maxwell, cuando este presenta el conjunto de ecuaciones que llevan su nombre y con las que, además, se vincula matemáticamente a la electricidad y el magnetismo con la óptica, lo que inauguró un enorme campo de posibilidades.

El descubrimiento que nos ocupa posee antecedentes que se pueden dividir en dos períodos: uno más “intuitivo” –antes de 1801– y otro práctico, de ese año hasta abril de 1820 (la publicación de sus resultados es fechada el 21 de julio). El primero, porque al parecer Oersted no se creyó del todo eso que creía saberse desde tiempos de Anaximandro sino que desde la niñez manifestó gran inquietud y curiosidad como exitoso estudiante, primero de farmacia (e hijo de farmacéutico) y luego de ciencias y filosofía. El otro período, ya siendo un físico importante, es signado por la búsqueda de la relación entre electricidad y magnetismo, idea que tenía (seguramente también) el físico alemán J. W. Ritter, a quien conoció en alguno de sus viajes de esos años. Cabe hacer aquí dos acotaciones: la formación filosófica de Oersted le brinda como inspiración la filosofía F. Schelling, que lo hace sospechar “una unidad subyacente dentro de todas las manifestaciones de fuerzas dentro de la naturaleza” (Vargas, 2019). Y, esa idea y la posibilidad de la relación entre los fenómenos que dan título a estas líneas, y la conclusión –merced a Oersted– de que ella existe, no suponen su unificación sino que el establecimiento del electromagnetismo entendido como un solo ámbito de la física debe esperar al menos una década.

La búsqueda de esa relación se hace práctica desde 1801 porque es entonces cuando Oersted empieza a experimentar usando sus propias versiones de pilas eléctricas, que A. Volta había inventado el año anterior. El experimento de 1820, “había sido diseñado por él para explicar el tema de las analogías entre electricidad y magnetismo” (Vargas, 2019), analogías identificadas desde 1774 gracias a las diligencias de la Sociedad Científica de Baviera. En él se usó una batería galvánica…

“Hecha en compañía de su amigo Esmarch la cual consistía en 20 cubetas de cobre de doce pulgadas de largo y alto, pero de solo 2,5 pulgadas de ancho. Cada cubeta contaba con dos placas de cobre encorvadas de tal manera que pudieran sujetar la barra de cobre que sostiene la placa de zinc que se sumerge en el agua de la siguiente cubeta. Dicha agua contenía 1/60 de su peso de ácido sulfúrico y una cantidad similar de ácido nítrico” (Pérez y Varela, 2003, p. 94. Tomado de Vargas, 2019, p. 53).

Hacer notar esto tiene su importancia, pues –escribe Beléndez– que “se ha propagado la historia de que su descubrimiento se había producido de forma fortuita, casi por azar, cuando realizaba experiencias con una corriente eléctrica en clase con sus alumnos y vio que dicha corriente hacía girar la aguja de una brújula que tenía en la misma mesa. Esta versión tiene su origen en una carta que envió uno de sus discípulos a Faraday casi cuarenta años después del descubrimiento”. El sociólogo R. K. Merton introdujo, para designar descubrimientos científicos fortuitos, la palabra serendipity, que Horace Walpole había usado previamente con el significado de “casualidad afortunada” (Capanna, 2011). Pero Pablo Capanna advierte que “cuando introdujo el concepto de “serendipia”, Merton se proponía complementar al método hipotético-deductivo para dejarle algún margen a la variedad de experiencias posibles”. Y agrega que…

El sueño baconiano o positivista de un método perfecto tiene una limitación esencial: si existiera algo así, bastaría con seguirlo fielmente para producir avances significativos del conocimiento, sin necesidad de talento alguno.

A veces, los proyectos demasiado específicos producen escasos resultados, porque no permiten que la mente se mantenga abierta a lo imprevisto. Como observaba Arthur Kornberg, Nobel de Medicina, la investigación se parece más al pool que al billar. Por eso recomendaba dar a los investigadores una sólida formación en ciencia básica, entendiendo que los avances más importantes a veces habían venido de la curiosidad en torno de cuestiones fundamentales de física, química o biología. (Capanna, 2011).

Ciertamente, es el caso con Oersted, ya que poseía una formación excelente tanto en ciencias como en filosofía. Mediante otro experimento, en 1820, demostró que cuando un conductor lleva una corriente, produce un campo magnético –decimos actualmente– pues la noción de campo no estaba ni remotamente desarrollada.

En este experimento, varias brújulas se colocan en un plano horizontal cercanas a un alambre largo vertical (…) Cuando no existe corriente en el alambre, todas la brújulas apuntan a la misma dirección (que el campo terrestre) como se esperaría. Sin embargo, cuando el alambre lleva una gran corriente estable las brújulas se desvían en dirección tangente a un círculo (Serway, 1993, p. 855).

Ahora bien, aunque Oersted introduce el término electromagnetismo, no es sino con M. Faraday, luego de las experiencias que evidencian la inducción electromagnética (en 1831), que se establece claramente la unión de la electricidad y el magnetismo. Los conceptos de “líneas de fuerza” y de “campo magnético” proceden de Faraday, y fueron formulados también alrededor de ese año.

Finalizamos con dos conclusiones. El experimento de Oersted no fue algo tan “simple” como se infiere de algunos enunciados. Y, ya lo señaló Lagrange, descubrimientos así le ocurren a quienes los provocan (Beléndez).

Interpretación Convencionalista del Experimento de Oersted

*Celso Vargas Elizondo

  1. El convencionalismo

El convencionalismo fue un movimiento filosófico muy importante durante las primera siete décadas del siglo XX en la comprensión de la tarea científica.  Reconocemos dos momentos en el desarrollo de esta perspectiva: las primeras décadas del siglo XX con Pioncaré, Duhem y Reichenbach; y una segunda etapa bajo la tesis de la “subdeterminación” de las teorías científicas, tesis conocida como Duhem-Quine.  Se puede consultar con mucho provecho a Torsten Wilholt (2012) Conventionalism: Poincaré, Duhem, Reichenbach, disponible en la web.

La característica principal del convencionalismo es que no considera un sistema científico como verdadero, sino “verdadero por convención” (Lakatos, 1970, History of Science and Its Rational Reconstructions). No significa esto que un sistema científico sea arbitrario, pues la selección de la convención responde a criterios, entre otros, la simplicidad.  En el capítulo de Popper sobre “simplicidad” (1958 Logic of Scientific Discovery), muestra que la adopción de la geometría euclidiana, sobre otras de más dimensiones, responde el hecho de que es más fácil modelar fenómenos físicos en términos de esta geometría.  En este sentido, los científicos y también matemáticos, buscan estrategias para reducir un problema de múltiples dimensiones a uno de menores dimensiones siempre y cuando sea representativo del problema a resolver.  Pero en un sentido mucho más profundo, la segunda tesis es que las teorías científicas “dicen más” sobre la realidad que el mundo mismo, por ejemplo, el espectro de las ondas Hertz, es mucho más amplio que el tipo de ondas que encontramos en la realidad, incluyendo las artificiales.  Dado este hecho, varias posibles teorías serían compatibles con los datos.  Por convención se adopta aquella que sea más simple.

Como toda convención requiere el consenso de la comunidad científica para adoptar una determinada teoría.  El proceso del desarrollo de la ciencia está profundamente marcado por este esfuerzo de los representantes de las teorías por imponer su teoría a la comunidad científica, en dos sentidos, lograr nuevos adeptos, y mostrar que su teoría es más simple que las rivales.  Sin embargo, debemos señalar que es muy difícil proponer criterios de simplicidad de manera general.  Y este es uno de los principales problemas del convencionalismo.

2. Análisis del experimento de Oersted

El experimento de Oersted se encuentra el inicio del rápido desarrollo, tanto teórico como experimental, en el campo del electromagnetismo.  Progresos que se alcanzan gracias a destacadas figuras científicas como Faraday, Helmholtz, Maxwell y Hertz, entre otros. De 1820 a 1890 veremos desarrollarse y florecer este importante campo de la investigación científica.  Así pues, en 1820 todavía no contamos con una teoría, entendida, como dice Duhem, como “un sistema matemático de proposiciones, deducido de un pequeño número de principios, cuyo objetivo es representar lo más simple, completo y exacto como sea posible un conjunto de leyes experimentales”, en términos del cual poder aplicar los criterios convencionalistas.

Sin embargo, encontramos en el experimento de Oersted algunos elementos que concuerdan con los criterios convencionalistas, por ejemplo, la formación de una red conceptual que permita darle sentido a los hallazgos en este nuevo campo de la investigación científica.  Quiero centrarme en dos estos elementos de la red conceptual.

Se desprende de lo dicho anteriormente, que para el convencionalista la aceptación de los resultados científicos dependen del consenso de la comunidad científica.  En este sentido, Oersted hace un importante esfuerzo por buscar testigos y formas de validación de sus resultados, incluyendo desde luego, una legitimación del vocabulario o terminología correspondiente.  Invita Oersted a distinguidos testigos y describe su serie de experimentos con el fin que sean repetidos y aceptados por otros investigadores.  Y su trabajo será pronto reconocido y premiado, es decir, alcanza el consenso, condición importante para el convencionalista.

Distinguimos en Oersted tres tipos de vocabulario en la presentación de sus experimentos: a) vocabulario que describe conceptos obtenidos con antelación, como gálvano, aguja magnética, circuito galvánico, receptáculos de cobre, polo opuesto, ácido sulfúrico y ácido nítrico, entre otros.  b) vocabulario no técnico tomado del uso ordinario como Este, Oeste, magnitud, goma (gum-lac), giros, entre otros. c) términos técnicos introducidos por el mismo Oersted:  conflicto eléctrico (actualmente, campo magnético), electricidad negativa (actualmente, flujo de electrones), inclinación de la aguja (desplazamiento de la dirección de la aguja), unión conductora (joining conductor) y fuerza eléctrica, entre los más importantes. Sin embargo, lo que hemos indicado en este párrafo  constituye un elemento superficial del convencionalismo, por las limitaciones anteriormente indicadas.

3. Problemas relacionados con convencionalismo

Quisiera referirme brevemente a dos tesis que considero problemáticas del convencionalismo.  La primera es que la tarea de la comunidad científica es arribar a un sistema científico por convención, es decir, aceptarlo verdadero por convención. La segunda es la consideración de un sistema científico como “un sistema matemático de proposiciones, deducido de un pequeño número de principios, cuyo objetivo es representar lo más simple, completo y exacto como sea posible un conjunto de leyes experimentales”.   En ambas tesis, el compromiso de la investigación científica por la búsqueda de la verdad es dejada de lado.  Somos conscientes, desde luego, de las dificultades de proporcionar una definición general adecuada de verdad, cosa que intentaremos en las dos perspectivas siguientes sobre este tema.  El énfasis en el carácter deductivo de la ciencia, refleja un aspecto muy importancia de la ciencia; el segundo es la “interrogación” a la naturaleza, en el caso específico de las ciencias naturales.

COVID-19: filosofía, ciencia y tecnología

*Álvaro Carvajal Villaplana

Ante la crisis sanitaria que provoca el COVID-19 en el país, la periodista María Gabriela Mayorga López, de la Oficina de Divulgación de la Universidad de Costa Rica, me solicitó que le planteara dos preguntas, con sus respectivas respuestas acerca de los aportes de la filosofía ante la crisis. Esto para ser publicado en el Suplemento de Ciencia y Tecnología, en el Semanario Universidad. Pero, como mis respuestas fueron amplias, y en razón de la corta extensión de lo solicitado, he pensado que, para no mutilar el texto, lo mejor es publicarlo en la columna Nuevas Perspectivas, del Círculo de Cartago.

Las dos preguntas que me hice son: (I) ¿Contribuye la historia de la filosofía a comprender la situación actual de la pandemia del COVID-10?, y (II) ¿puede la filosofía aportar algo a la aplicación de la ciencia y la tecnología a la lucha contra epidemias?

Continuar leyendo “COVID-19: filosofía, ciencia y tecnología”